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Abstract
In this paper we consider a discrete scale invariant (DSI) process {X(t), t ∈ R+}
with scale l > 1. We consider a fixed number of observations in every scale,
say T, and acquire our samples at discrete points αk, k ∈ W, where α is
obtained by the equality l = αT and W = {0, 1, . . .}. We thus provide a
discrete time scale invariant (DT-SI) process X(·) with the parameter space
{αk, k ∈ W}. We find the spectral representation of the covariance function
of such a DT-SI process. By providing the harmonic-like representation of
multi-dimensional self-similar processes, spectral density functions of them
are presented. We assume that the process {X(t), t ∈ R+} is also Markov in
the wide sense and provide a discrete time scale invariant Markov (DT-SIM)
process with the above scheme of sampling. We present an example of the
DT-SIM process, simple Brownian motion, by the above sampling scheme and
verify our results. Finally, we find the spectral density matrix of such a DT-SIM
process and show that its associated T-dimensional self-similar Markov process
is fully specified by

{
RH

j (1), RH
j (0), j = 0, 1, . . . , T − 1

}
, where RH

j (τ ) is
the covariance function of j th and (j + τ)th observations of the process.

PACS numbers: 05.40.−a, 02.50.Ga, 05.40.Jc

1. Introduction

The concept of stationarity and self-similarity is used as a fundamental property to handle
many natural phenomena. The Lamperti transformation defines a one to one correspondence
between stationary and self-similar processes. A function is scale invariant if it is identical to
any of its rescaled version, up to some suitable renormalization in amplitude. The discrete scale
invariance (DSI) process can be defined as the Lamperti transform of the periodically correlated
(PC) process [2]. Many critical systems like statistical physics, textures in geophysics, network
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traffic and image processing can be interpreted by these processes [1]. Flandrin et al introduced
a multiplicative spectral representation of DSI processes based on the Mellin transform and
presented preliminary remarks about estimation issues [2, 6].

As the Fourier transform is known as a suited representation for stationarity, but not
for self-similarity, a harmonic-like representation of the self-similar process is introduced by
using the Mellin transform [6].

The covariance function and spectral density of a discrete time periodically correlated
Markov process, has been studied and characterized in [11]. Markov processes have been the
center of extensive research activities and wide-sense Markov processes are studied before the
general theory. In some texts, these processes are defined in the case of transition probabilities
of a Markov process. Various classes of wide-sense Markov processes are like jump processes,
diffusion processes and processes with a discrete interference of chance [7]. A process which
is Markov and self-similar is called the self-similar Markov process. These processes are
involved in various parts of probability theory, such as branching processes and fragmentation
theory [4].

In this paper, we consider a DSI process with some scale l > 1, and we get our samples
at points αk , where k ∈ W, l = αT , W = {0, 1, . . .} and T is the number of samples in each
scale. By such sampling we provide a discrete time scale invariant process in the wide sense
and find the spectral representation of the covariance function of such process.

This paper is organized as follows. In section 2, we present stationary and self-similar
processes by shift and renormalized dilation operators. Then we provide a suitable platform
for our study of discrete time self-similar (DT-SS) and discrete time scale invariant (DT-SI)
processes by introducing the quasi-Lamperti transformation. The harmonizable representation
of these processes is expressed in this section too. Also by using the spectral density matrix
of PC processes, the spectral representation of the covariance function of DT-SI processes are
given. In section 3, a harmonic-like representation of multi-dimensional self-similar processes
and spectral density functions of them are obtained. As an example we introduce a process
called the simple Brownian motion which is DSI and Markov as well. Finally, a discrete time
scale invariant Markov (DT-SIM) process with the above scheme of sampling is considered
in section 3 and the spectral density matrix of such a process and its associated T-dimensional
self-similar Markov process are characterized.

2. Theoretical framework

In this section, by using a renormalized dilation operator, we define discrete time self-
similar and discrete time scale invariant processes. The quasi-Lamperti transformation
and its properties are introduced. We also present the harmonizable representation of the
stationary and harmonic-like representation of self-similar processes. The spectral density of
PC processes and the spectral representation of the covariance function of DT-SI processes
are given.

2.1. Stationary and self-similar processes

Definition 2.1. Given τ ∈ R, the shift operator Sτ operates on the process {Y (t), t ∈ R}
according to

(Sτ Y )(t) := Y (t + τ). (2.1)

A process {Y (t), t ∈ R} is said to be stationary, if for any t, τ ∈ R
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{(Sτ Y )(t)} d= {Y (t)}, (2.2)

where
d= is the equality of all finite-dimensional distributions.

If (2.2) holds for some τ ∈ R, the process is said to be periodically correlated. The
smallest of such τ is called the period of the process.

Definition 2.2. Given some numbers H > 0 and λ > 0, the renormalized dilation operator
DH,λ operates on the process {X(t), t ∈ R+} according to

(DH,λX)(t) := λ−HX(λt). (2.3)

A process {X(t), t ∈ R+} is said to be self-similar of the index H, if for any λ > 0

{(DH,λX)(t)} d= {X(t)}. (2.4)

The process is said to be DSI of the index H and scaling factor λ0 > 0 or (H, λ0)-DSI, if (2.4)
holds for λ = λ0.

As an intuition, self-similarity refers to an invariance with respect to any dilation factor.
However, this requirement may be too challenging for capturing in situations where scaling
properties are only observed for some preferred dilation factors.

Definition 2.3. A process {X(k), k ∈ Ť} is called the discrete time self-similar (DT-SS)
process with the parameter space Ť , where Ť is any subset of distinct points of positive real
numbers, if for any k1, k2 ∈ Ť

{X(k2)} d=
(

k2

k1

)H

{X(k1)}. (2.5)

The process X(·) is called the discrete time scale invariance (DT-SI) with the scale l > 0 and
parameter space Ť , if for any k1, k2 = lk1 ∈ Ť , (2.5) holds.

Remark 2.1. If the process {X(t), t ∈ R+} is DSI with the scale l = αT for fixed T ∈ N and
α > 1, then by sampling of the process at points αk, k ∈ W where W = {0, 1, . . .}, we have
X(·) as a DT-SI process with the parameter space Ť = {αk; k ∈ W} and scale l = αT . If we
consider sampling of X(·) at points αnT +k, n ∈ W, for fixed k = 0, 1, . . . , T − 1, then X(·) is
a DT-SS process with the parameter space Ť = {αnT +k; n ∈ W}.

Yazici et al [13, 14] introduced wide-sense self-similar processes as the following
definition, which can be obtained by applying the Lamperti transformation LH to the class
of wide-sense stationary processes. This class encompasses all strictly self-similar processes
with finite variance, including Gaussian processes such as the fractional Brownian motion but
no other alpha-stable processes.

Definition 2.4. A random process {X(t), t ∈ R+} is said to be wide-sense self-similar with
the index H, for some H > 0 if the following properties are satisfied for each a > 0:

(i) E[X2(t)] < ∞,
(ii) E[X(at)] = aHE[X(t)],

(iii) E[X(at1)X(at2)] = a2H E[X(t1)X(t2)].

This process is called the wide-sense DSI of the index H and scaling factor a0 > 0, if the
above conditions hold for some a = a0.

Definition 2.5. A random process {X(k), k ∈ Ť } is called DT-SS in the wide-sense with the
index H > 0 and with the parameter space Ť , where Ť is any subset of distinct points of
positive real numbers, if for all k, k1 ∈ Ť and all a > 0, where ak, ak1 ∈ Ť :

3



J. Phys. A: Math. Theor. 43 (2010) 125004 N Modarresi and S Rezakhah

(i) E[X2(k)] < ∞,
(ii) E[X(ak)] = aH E[X(k)],

(iii) E[X(ak)X(ak1)] = a2H E[X(k)X(k1)].

If the above conditions hold for some fixed a = a0, then the process is called DT-SI in the wide
sense with the scale a0.

Remark 2.2. Let {X(t), t ∈ R+} in remark 2.1 be DSI in the wide sense. Then X(·) with the
parameter space Ť = {αk; k ∈ W} for α > 1 is DT-SI in the wide sense, where W = {0, 1, . . .}
and X(·) with the parameter space Ť = {αnT +k; n ∈ W} for fixed T ∈ N and α > 1 is DT-SS
in the wide sense.

In this paper we deal with the wide-sense self-similar and wide-sense scale invariant
processes, and for simplicity we omit the term ‘in the wide sense’ hereafter.

2.2. Quasi-Lamperti transformation

We introduce the quasi-Lamperti transformation and its properties by the following.

Definition 2.6. The quasi-Lamperti transform with the positive index H and α > 1, denoted
by LH,α operates on a random process {Y (t), t ∈ R} as

LH,αY (t) = tHY (logα t) (2.6)

and the corresponding inverse quasi-Lamperti transform L−1
H,α on the process {X(t), t ∈ R+}

acts as

L−1
H,αX(t) = α−tH X(αt ). (2.7)

One can easily verify that LH,αL−1
H,αX(t) = X(t) and L−1

H,αLH,αY (t) = Y (t). Note that
in the above definition, if α = e, we have the usual Lamperti transformation LH .

Theorem 2.1. The quasi-Lamperti transform guarantees an equivalence between the shift
operator Slogα k and the renormalized dilation operator DH,k in the sense that for any k > 0

L−1
H,αDH,kLH,α = Slogα k. (2.8)

Proof.

L−1
H,αDH,kLH,αY (t) = L−1

H,αDH,k(t
HY (logα t)) = L−1

H,α(k−H (kt)HY (logα kt))

= L−1
H,α(tHY (logα kt)) = α−tH (αt )HY (logα kαt ) = Y (logα k + t) = Slogα kY (t).

�

Corollary 2.1. If {Y (t), t ∈ R} is the stationary process, its quasi-Lamperti transform
{LH,αY (t), t ∈ R+} is self-similar. Conversely if {X(t), t ∈ R+} is the self-similar process, its
inverse quasi-Lamperti transform

{
L−1

H,αX(t), t ∈ R
}

is stationary.

Corollary 2.2. If {X(t), t ∈ R+} is (H, αT )-DSI then L−1
H,αX(t) = Y (t) is PC with period

T > 0. Conversely if {Y (t), t ∈ R} is PC with the period T then LH,αY (t) = X(t) is
(H, αT )-DSI.

Remark 2.3. If X(·) is a DT-SS process with the parameter space Ť = {ln, n ∈ W}, then its
stationary counterpart Y (·) has the parameter space Ť = {nT , n ∈ N}:

X(ln) = LH,αY (ln) = lnH Y (logα αnT ) = αnT HY (nT ).
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Also it is clear by the following relation that if X(·) is a DT-SI process with the scale l = αT ,
T ∈ N and the parameter space Ť = {αk, k ∈ W}, then Y (·) is a discrete time periodically
correlated (DT-PC) process with the period T and parameter space Ť = {n, n ∈ N}:

Y (n) = L−1
H,αX(n) = α−nH X(αn).

2.3. Harmonizable representation

A stationary process Y (t), EY(t) = 0, can be represented as

Y (t) =
∫ ∞

−∞
eiωt dϕ(ω) (2.9)

which is called the harmonizable representation of the process, and ϕ(ω) is a right continuous
orthogonal increment process, see [9]. Also the covariance function can be represented as

RY (t, s) =
∫ ∞

−∞

∫ ∞

−∞
eitω−isω′

d�(ω,ω′), (2.10)

where the spectral measure satisfies

d�(ω,ω′) = E[dϕ(ω) dϕ(ω′)] =
{

0 ω �= ω′

d�(ω) ω = ω′,
(2.11)

and d�(ω) = E[|dϕ(ω)|2]. All the spectral mass is located on the diagonal line
ω = ω′. When �(ω,ω′) is absolutely continuous, we have spectral density φ(ω, ω′)
such that d�(ω,ω′) = φ(ω, ω′) dω dω′. A necessary and sufficient condition for this
equality to hold, as Loeve’s condition for harmonizability, is that �(ω,ω′) must satisfy∫ ∫ |d�(ω,ω′)| < ∞. The corresponding notion for processes after a Lamperti transformation
introduces a new representation for a class of processes deviating from self-similarity, which
is called multiplicative harmonizability. A self-similar process X(t) has the harmonic-like
representation as an inverse Mellin transform, namely an integral of uncorrelated spectral
increments dϕ(ω) on the Mellin basis [1].

X(t) =
∫

tH+iω dϕ(ω), (2.12)

and the process has this property if it verifies as

RX(t, s) =
∫ ∫

tH+iωsH−iω′
d�(ω,ω′). (2.13)

The inverse Mellin transformation gives the expression of the spectral function if the correlation
is known as [2]

φ(ω, ω′) =
∫ ∫

t−H−iωs−H+iω′
RX(t, s)

dt

t

ds

s
. (2.14)

2.4. Spectral density function

The spectral density of a PC process is introduced by Gladyshev in [8]. If Y (n) is a DT-PC
process, the spectral density matrix is a Hermitian nonnegative definite T × T matrix of the
functions f (ω) = [fjk(ω)]j,k=0,1,...,T −1, and the covariance function has the representation

Rn(τ) := Cov(Y (n), Y (n + τ)) =
T −1∑
k=0

Bk(τ) e2kπ in/T , (2.15)

5
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where

Bk(τ) =
∫ 2π

0
eiτωfk(ω) dω.

Also fk(ω) and fjk(ω), j, k = 0, 1, . . . , T − 1, are related to

fjk(ω) = 1

T
fk−j ((ω − 2πj)/T ), 0 � ω < 2π.

For k < 0, ω < 0 or ω > 2π , the functions fk(ω) are defined by the equality fk+T (ω) = fk(ω)

and fk(ω) = fk(ω + 2π).
Let {X(t), t ∈ R+} be a zero mean DSI process with the scale l. If l < 1, we reduce the

time scale, so that l in the new time scale is greater than 1. Our sampling scheme is to acquire
samples at points αk , k ∈ W, where by choosing the number of samples in each scale, say
T ∈ N, we find α by l = αT . Therefore, the process under study {X(αn), n ∈ W} is DT-SI
with the scale l = αT .

Proposition 2.2. If X(αn) is DT-SI with the scale l = αT , T ∈ N, then we have the spectral
representation of the covariance function of the process as

RH
n (τ) := Cov(X(αn),X(αn+τ )) = α(2n+τ)H

T −1∑
k=0

Bk(τ) e2kπ in/T , (2.16)

where

Bk(τ) =
∫ 2π

0
eiτωfk(ω) dω (2.17)

and

fjk(ω) = 1

T
fk−j ((ω − 2πj)/T ), (2.18)

for j, k = 0, 1, . . . , T − 1 and 0 � ω < 2π .

Proof. According to (2.6) and corollary 2.1, for any n, τ ∈ W

RH
n (τ) = E[X(αn)X(αn+τ )] = E[LH,αY (αn)LH,αY (αn+τ )]

= α(2n+τ)H E[Y (n)Y (n + τ)],

where Y (n) is the DT-PC process with the period T = logα l. Thus, by (3.1)

RH
n (τ) = α(2n+τ)H Rn(τ) = α(2n+τ)H

T −1∑
k=0

Bk(τ) e2kπ in/T .

�

3. Characterization of the spectrum

In this section we provide the spectral density matrix of a multi-dimensional self-similar
process W(n). By using the harmonic-like representation of a self-similar process, we
characterize the spectral density matrix of the DT-SI process in subsection 3.1. The DT-SIM
process with a new scheme of sampling is considered and the properties of an introduced
example are verified. The spectral density matrix of such a process and its associated
T-dimensional self-similar Markov process are characterized in subsection 3.2.
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3.1. Spectral representation of the multi-dimensional self-similar process

By Rozanov [12], if ξ(t) = {ξk(t)}k=1,...,n is an n-dimensional stationary process, then

ξ(t) =
∫

eiλtφ(dλ) (3.1)

is its spectral representation, where φ = {ϕk}k=1,...,n and ϕk is the random spectral measure
associated with the kth component ξk of the n-dimensional process ξ . Let

Bkr(τ ) = E[ξk(τ + t)ξ r(t)], k, r = 1, . . . , n

and B(τ) = [Bkr(τ )]k,r=1,...,n be the correlation matrix of ξ . The components of the correlation
matrix of the process ξ can be represented as

Bkr(τ ) =
∫

eiλτFkr(dλ), k, r = 1, . . . , n, (3.2)

where for any Borel set �, Fkr(�) = E[ϕk(�)ϕr(�)] are the complex valued set functions
which are σ -additive and have bounded variation. For any k, r = 1, . . . , n, if the sets
� and �′ do not intersect, E[ϕk(�)ϕr(�′)] = 0. For any interval � = (λ1, λ2) when
Fkr({λ1}) = Fkr({λ2}) = 0 the following relation holds:

Fkr(�) = 1

2π

∫
�

∞∑
τ=−∞

Bkr(τ ) e−iλτ dλ

= 1

2π
Bkr(0)[λ2 − λ1] + lim

T →∞
1

2π

∑
0<|τ |�T

Bkr(τ )
e−iλ2τ − e−iλ1τ

−iτ
(3.3)

in the discrete parameter case, and

Fkr(�) = lim
a→∞

1

2π

∫ a

−a

e−iλ2τ − e−iλ1τ

−iτ
Bkr(τ ) dτ

in the continuous parameter case.
Using the above results by Rozanov for multi-dimensional stationary processes and by

using the Lamperti transformation, we present the definition of a multi-dimensional self-
similar process and obtain the properties of the corresponding multi-dimensional self-similar
process by the following theorem.

Definition 0.1. The process U(t) = (U 0(t), U 1(t), . . . , Uq−1(t)) is a q-dimensional discrete
time self similar process in the wide sense with parameter space T̂ , which consists of finite or
countably many points of R+, if the following are satisfied

(a) {Uj(·)} for every j = 0, 1, . . . , q − 1 is DT-SS process with parameter space T̂ .
(b) Ui(·) and Uj(·) for i, j = 0, 1, . . . , q − 1 have self-similar correlation, that is

Cov(Ui(ts), Uj (tr)) = t2H Cov(Ui(s), Uj (r)),

where s, r, ts, tr are in Ť .

Theorem 3.1. Let W(αk) = (
W 0(αk),W 1(αk), . . . ,Wq−1(αk)

)
, k ∈ Z, α > 1 be a discrete

time q-dimensional self-similar process. Then

(i) the harmonic-like representation of Wj(αk) is

Wj(αk) = αkH

∫ 2π

0
eiωk dϕjω), (3.4)

where ϕj (ω) is the corresponding spectral measure, that E[dϕj (ω) dϕr(ω′)] = dDH
jr(ω)

when ω = ω′ and is 0 when ω �= ω′. We call DH
jr(ω) the spectral distribution function of

the process;

7
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(ii) the corresponding spectral density matrix of {W(αk), k ∈ Z is dH (ω) =[
dH

jr(ω)
]
j,r=0,...,q−1, where

dH
jr(ω) = 1

2π

∞∑
n=−∞

α−nH e−iωnQH
jr(α

n), (3.5)

α > 1 and QH
jr(α

n) is the covariance function of Wj(αn) and Wr(1).

Before proceeding to the proof of the theorem we recall that based on our sampling
scheme at points αk , k ∈ Z, of continuous DSI process with the scale l = αT , α ∈ R, T ∈ N .
So we consider W(·) at points ln = αnT as the corresponding T-dimension DT-SS process and
apply this theorem in lemma 3.4.

Proof of (i). Wj(αk) for j = 0, 1, . . . , q − 1 is DT-SS and its stationary counterpart ξ j (k)

has the spectral representation ξ j (k) = ∫ 2π

0 eiωk dϕj (ω). Thus, by (2.6)

Wj(αk) = LH,αξ j (αk) = αkH ξj (k) = αkH

∫ 2π

0
eiωk dϕj (ω).

Proof of (ii). The covariance matrix is denoted by QH(n, τ) = [
QH

jr(α
n, ατ )

]
j,r=0,...,q−1

where its elements have the spectral representation

QH
jr(α

m, ατ ) = E[Wj(αmατ )Wr(αm)] = α2mH E[Wj(ατ )Wr(1)] = α2mH QH
jr(α

τ ). (3.6)

Also by (3.4)

QH
jr(α

τ ) = ατHE

[ ∫ 2π

0
eiωτ dϕj (ω)

∫ 2π

0
dϕr(ω′)

]
= ατH

∫ 2π

0
eiωτ dDH

jr(ω), (3.7)

where E[dϕj (ω) dϕr(ω′)] = dDH
jr(ω) when ω = ω′ and is 0 when ω �= ω′.

The spectral distribution function of the correlation matrix QH(ατ ) =[
QH

jr(α
τ )

]
j,r=0,...,q−1 is

DH(dω) = [
DH

jr(dω)
]
j,r=0,...,q−1.

By (3.2), (3.3), (3.7) and appropriate transformation we have

DH
jr(A) = 1

2π

∫
A

∞∑
n=−∞

α−nH e−iλnQH
jr(α

n) dλ. (3.8)

Let A = (ω, ω + dω]; then we have the spectral density matrix as dH (ω) =[
dH

jr(ω)
]
j,r=0,...,q−1, where

dH
jr(ω) := DH

jr(dω)

dω
= 1

2π

∞∑
n=−∞

(
1

dω

∫ ω+dω

ω

e−iλn dλ

)
α−HnQH

jr(α
n)

= 1

2π

∞∑
n=−∞

(
− 1

in
lim

dω→0

e−i(ω+dω)n − e−iωn

dω

)
α−HnQH

jr(α
n)

= 1

2π

∞∑
n=−∞

((
− 1

in

)
(−in) e−iωn

)
α−HnQH

jr(α
n) = 1

2π

∞∑
n=−∞

α−nH e−iωnQH
jr(α

n).

Existence of dH
jr(ω) follows from part (i) of the theorem as Wk(αn) is the Lamperti

counterpart of the stationary process ξk(n), k = 0, . . . , q − 1. �

8
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3.2. Spectral density of the DT-SIM process

Let {X(t), t ∈ R} be a DSI process with the scale l and Markov in the wide sense. Using our
sampling scheme described in this section, we assume l and α to be greater than one. Thus,
{X(αn), n ∈ W} is a DT-SIM process with the scale l = αT .

Let R(t1, t2) be some function defined on T × T and suppose that R(t1, t2) �= 0
everywhere on T × T , where T is an interval. Borisov [3] showed that the necessary
and sufficient condition for R(t1, t2) to be the covariance function of a Gaussian Markov
process with the time space T is

R(t1, t2) = G(min(t1, t2))K(max(t1, t2)), (3.9)

where G and K are defined uniquely up to a constant multiple and the ratio G/K is a positive
nondecreasing function on T .

It should be noted that the Borisov result on Gaussian Markov processes can be easily
derived in the discrete case for second-order Markov processes in the wide sense, by using
theorem 8.1 of Doob [5].

Here, we present a closed formula for the covariance function of the DT-SIM process and
characterized the covariance matrix of the corresponding T-dimensional self-similar Markov
process by theorems 3.2 and 3.3 [10].

Theorem 3.2. Let {X(αn), n ∈ Z} be a DT-SIM process with the scale l = αT , α > 1, T ∈ N;
then the covariance function

RH
n (τ) = E[X(αn+τ )X(αn)], (3.10)

where τ ∈ W, n = 0, 1, . . . , T − 1, RH
n+T (τ ) = α2T HRH

n (τ) and RH
n (τ) �= 0 is of the form

RH
n (kT + v) = [h̃(αT −1)]kh̃(αv+n−1)[h̃(αn−1)]−1RH

n (0), (3.11)

RH
n (−kT + v) = α−2kT HRH

n+v((k − 1)T + T − v)

where k ∈ W, v = 0, 1, . . . , T − 1,

h̃(αr) =
r∏

j=0

h(αj ) =
r∏

j=0

RH
j (1)/RH

j (0), r ∈ W (3.12)

and h̃(α−1) = 1.

Proof. Here we present the sketch of the proof. From the Markov property (3.9), for α > 1,
we have that

RH
n (τ) = G(αn)K(αn+τ ) τ ∈ W. (3.13)

and

RH
n (0) = G(αn)K(αn).

Thus,

K(αn+τ ) = RH
n (τ)

RH
n (0)

K(αn). (3.14)

For τ = 1, by a recursive substitution in (3.14) one can easily verify that

K(αn) = K(1)

n−1∏
j=0

h(αj ), (3.15)

9
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where h(αj ) = RH
j (1)

/
RH

j (0). Hence, for n = 0, 1, . . . , T − 1, k ∈ W

K(αkT +n) = K(1)

kT +n−1∏
j=0

h(αj ).

As X(·) is DT-SI with the scale αT by (3.10)

h(αT +i ) = RH
T +i (1)

RH
T +i (0)

= RH
i (1)

RH
i (0)

= h(αi), i ∈ W.

Therefore, using (3.12) we have

kT +n−1∏
j=0

h(αj ) = [h̃(αT −1)]kh̃(αn−1). (3.16)

Consequently for n = 0, 1, . . . , T − 1

K(αkT +n) = K(1)[h̃(αT −1)]kh̃(αn−1). (3.17)

Let τ = kT + v; then it follows from (3.14) and (3.17) that

RH
n (kT + v) = K(αn+kT +v)

K(αn)
RH

n (0) = K(1)[h̃(αT −1)]kh̃(αv+n−1)

K(1)h̃(αn−1)
RH

n (0)

= [h̃(αT −1)]kh̃(αv+n−1)[h̃(αn−1)]−1RH
n (0)

for k = 0, 1, . . ., α > 1 and n, v = 0, 1, . . . , T − 1.
Using (3.10) for τ = −kT + v we have that

RH
n (−kT + v) = E[X(α−kT +n+v)X(αn)] = α−2kT HE[X(αn+v)X(αkT +n)]

= α−2kT HRH
n+v(kT − v) = α−2kT HRH

n+v((k − 1)T + T − v). �

Example 3.1. We consider moving of a particle in different environment A1, A2, . . . based on
the Brownian motion with different rates. Specially, we consider this movement by X(t) with
the index H > 0 and scale λ > 1 as

X(t) =
∞∑

n=1

λn(H− 1
2 )I[λn−1,λn)(t)B(t),

where B(·), I (·) are the Brownian motion and indicator function respectively and we call this
process simple Brownian motion.

Let A1 = [1, λ), A2 = [λ, λ2) and An = [λn−1, λn) as disjoint sets. The process X(t) is
DSI and Markov too. For checking these properties, first we find the covariance function of
it. The covariance function of the process for t ∈ An, s ∈ Am and s � t is

Cov(X(t),X(s)) = λ(n+m)(H− 1
2 )Cov(B(t), B(s)) = λ(n+m)(H− 1

2 )s, (3.18)

since as we know Cov
(
B(t), B(s)

) = min{t, s}. Therefore, by the condition (3.9), the above
covariance is the covariance function of a Markov process. Now we verify the DSI property.
If t is in (λn−1, λn], then λt is in (λn, λn+1]. Thus, for t ∈ An+1 and s ∈ Am+1 we have

Cov(X(λt),X(λs)) = λ(n+m+2)(H− 1
2 )Cov(B(λt), B(λs)) = λ(n+m+2)(H− 1

2 )λs

= λ2Hλ(n+m)(H− 1
2 )s = λ2H Cov(X(t),X(s)).

Then, X(t) is (H,λ)-DSI.

10
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By sampling of the process X(·) at points αn, n ∈ W, where λ = αT , T ∈ N and λ > 1,
we provide a DT-SIM process and investigate the conditions of theorem 3.2. For j = kT + i

where i = 0, 1, . . . , T − 2 and k = 0, 1, . . . by (3.18) we have that

h(αj ) = RH
j (1)

RH
j (0)

= Cov(X(αj+1),X(αj ))

Cov(X(αj ),X(αj ))
= α2(k+1)T H ′+j

α2(k+1)T H ′+j
= 1,

as αj , αj+1 ∈ Ak+1 and H ′ = H − 1
2 . Also for j = kT + T − 1 we have that

h(αj ) = RH
j (1)

RH
j (0)

= Cov(X(αj+1),X(αj ))

Cov(X(αj ),X(αj ))
= α(2k+3)T H ′+j

α(2k+2)T H ′+j
= αT H ′

,

as αj ∈ Ak+1 and αj+1 ∈ Ak+2. Thus, for j = kT + i, i = 0, 1, . . . , T − 2 and k = 0, 1, . . .

h̃(αkT +i ) =
kT +i∏
r=0

h(αr) =
k∏

r=0

αT H ′ = αkT H ′

and for j = kT + T − 1

h̃(αkT +T −1) =
kT +T −1∏

r=0

h(αr) =
k+1∏
r=0

αT H ′ = α(k+1)T H ′
.

Finally as h̃(αT −1) = αT H ′
,

h̃(αv+n−1) =
{

1 v + n − 1 � T − 2
αT H ′

v + n − 1 � T − 1

and h̃(αn−1) = 1, RH
n (0) = E[X(αn)X(αn)] = α2T H ′+n, n = 0, 1, . . . , T − 1. Thus,

RH
n (kT + v) =

{
α(k+2)T H ′+n v + n − 1 � T − 2
α(k+3)T H ′+n v + n − 1 � T − 1.

Also by straight calculation from (3.18) we have the same result.
Corresponding to the DT-SIM process, {X(αk), k ∈ Z} with the scale l = αT ,

α > 1, T ∈ N, there exists a T-dimensional discrete time self-similar Markov process
W(t) = (W 0(t),W 1(t), . . . ,WT −1(t)) with the parameter space Ť = {ln; n ∈ W, l = αT },
where

Wk(ln) = Wk(αnT ) = X(αnT +k), k = 0, . . . , T − 1. (3.19)

The elements of the covariance matrix which is defined by (3.6) at points ln and lτ by (3.10)
and (3.11) can be written as

QH
jk(l

n, lτ ) = E[Wj(ln+τ )Wk(ln)] = α2nHT E[X(ατT +j )X(αk)]

= α2nHT RH
k (τT + j − k) = α2nHT [h̃(αT −1)]τCH

jkR
H
k (0) (3.20)

in which CH
jk = h̃(αj−1)[h̃(αk−1)]−1 and RH

k (·) is defined in (3.10).

Theorem 3.3. Let {X(αn), n ∈ W} be a DT-SIM process with the covariance function RH
n (τ).

Also let {W(ln), n ∈ W}, defined in (3.19), be its associated T-dimensional discrete time
self-similar Markov process with the covariance function QH(ln, lτ ). Then

QH(ln, lτ ) = α2nHT CHRH [h̃(αT −1)]τ , τ ∈ W, (3.21)

11
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where h̃(·) is defined by (3.12) and the matrices CH and RH are given by CH =[
CH

jk

]
j,k=0,1,...,T −1, where CH

jk = h̃(αj−1)[h̃(αk−1)]−1, and

RH =

⎡
⎢⎢⎢⎣

RH
0 (0) 0 · · · 0
0 RH

1 (0) · · · 0
...

...
...

...

0 0 · · · RH
T −1(0)

⎤
⎥⎥⎥⎦ .

Remark 3.1. It follows from theorem 3.3 that for each k = 0, 1, . . . , T − 1 the process
Wk(ln) = X(αnT +k) is a self-similar Markov process for n ∈ W. The covariance function of
the process is

�H
k (ln, lτ ) = E[Wk(ln+τ )Wk(ln)] = α2nHT [h̃(αT −1)]τRH

k (0), τ ∈ W,

where CH
kk = h̃(αk−1)[h̃(αk−1)]−1 = 1.

The introduced T-dimensional self-similar Markov process W(t) with the parameter
space Ť = {ln, n ∈ W}, l = αn, T ∈ N, is the counterpart of the T-dimensional stationary
Markov process Y (t) = (Y 0(t), Y 1(t), . . . , Y T −1(t)). The spectral density matrix of such a
T-dimensional self-similar process is characterized by the following lemma.

Lemma 3.4. The spectral density matrix dH (ω) = [dH
jr(ω)]j,r=0,...,T −1 of the T-dimensional

self-similar process {W(ln), n ∈ W}, defined by (3.19), where l = αT has the Markov property
and is specified by

dH
jr(ω) = 1

2π

h̃(αj−1)RH
r (0)

h̃(αr−1)(1 − e−iωT α−HT h̃(αT −1))
− h̃(αr−1)RH

j (0)

h̃(αj−1)(1 − eiωT αHT h̃−1(αT −1))
,

where RH
k (0) is the variance of the process X(·) at point αk and h̃(αk) is defined by (3.12).

Proof. As we mentioned prior to the proof of theorem 3.1, we consider QH
jr(·, ·) at the discrete

points lm and ls where m, s ∈ W; then

QH
jr(l

m, ls) = E[Wj(lm+s)Wr(lm)] = l2mH E[Wj(ls)Wr(1)] = l2mH QH
jr(l

s).

If the T-dimensional discrete time self-similar Markov process W(·) is sampled at points
ln = αnT , then in (3.7) we have τT instead of τ , thus in (3.5) we have nT instead
of n and the corresponding spectral density matrix of the covariance matrix QH (ls) =[
QH

jr(l
s)

]
j,r=0,1,...,T −1 is

dH (ω) = [
dH

jr(ω)
]
j,r=0,1,...,T −1,

where

dH
jr(ω) = 1

2π

∞∑
s=0

l−Hs e−iωsT QH
jr(l

s) +
1

2π

−1∑
s=−∞

l−Hs e−iωsT QH
jr(l

s) := dH
jr1(ω) + dH

jr2(ω).

First we evaluate dH
jr1(ω):

dH
jr1(ω) = 1

2π

∞∑
s=0

e−iωsT l−HsRH
r (sT + j − r) = 1

2π

∞∑
s=0

e−iωsT α−HsT [h̃(αT −1)]sCH
jrR

H
r (0)

= h̃(αj−1)RH
r (0)

2πh̃(αr−1)

∞∑
s=0

(e−iωT α−HT h̃(αT −1))s . (3.22)

12
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Now we verify the convergence of the above summation. By (3.12) we have

|e−iωT h̃(αT −1)| = |h̃(αT −1)| =
T −1∏
j=0

|h(αj )| =
T −1∏
j=0

∣∣∣∣∣
RH

j (1)

RH
j (0)

∣∣∣∣∣

=
T −2∏
j=0

∣∣∣∣∣
E[X(αj+1)X(αj )]√

E[X2(αj+1)]E[X2(αj )]
× E[X(αT )X(αT −1)]√

E[X2(1)]E[X2(αT −1)]

∣∣∣∣∣ .
By the scale invariance of X(·) we have that E[X2(αT )] = α2T HE[X2(1)]. Now for
j = 0, . . . , T − 1 if at least one of the Corr[X(αj+1)X(αj )] < 1 then h̃(αT −1) < αT H ,
and

|e−iωT α−HT h̃(αT −1)| < 1.

Therefore, the summation on the right-hand side of (3.22) is convergent. Thus, the spectral
density is

dH
jr1(ω) = h̃(αj−1)RH

r (0)

2πh̃(αr−1)
× 1

1 − e−iωT α−HT h̃(αT −1)
.

Now we are to evaluate dH
jr2(ω):

dH
jr2(ω) = 1

2π

∞∑
s=1

lHseiωsT QH
jr(l

−ss).

As QH
jr(l

−s) = E(Wj(l−s)Wr(1)) = l−2sH E(Wj(1)Wr(ls)) = l−2sH QH
rj (l

s), so by a similar
method, one can easily verify that

dH
jr2(ω) = h̃(αr−1)RH

j (0)

2πh̃(αj−1)
× eiωT α−HT h̃(αT −1)

1 − eiωT α−HT h̃(αT −1)
.

So we arrive at an assertion of the lemma. �

Remark 3.2. Lemma 3.4 provides the spectral density of discrete time self-similar Markov
process {Wk(ln), n ∈ Z}, defined by (3.19), for k = 0, 1, . . . , T − 1 as

dH
kk(ω) = RH

k (0)(1 − [α−HT h̃(αT −1)]2)

2π(1 − 2 cos(ωT )α−HT h̃(αT −1) + [α−HT h̃(αT −1)]2)
.

Remark 3.3. Using lemma 3.4, relations (2.16), (2.17) and (3.20), we see that the spectral
density matrix f (ω) = [fjr(ω)]j,r=0,1,...,T −1 of a DT-SIM process which is defined by (2.18)
is fully specified by {RH

j (1), RH
j (0), j = 0, 1, . . . , T − 1}.

Example 3.2. Here, we present the T-dimensional discrete time self-similar Markov process
corresponding to the simple Brownian motion, described in example 3.1, as W(ln) =
(W 0(ln),W 1(ln), . . . ,WT −1(ln)), where Wk(ln) = X(αnT +k). Now as we mentioned in
lemma 3.5 we obtain the spectral density matrix of W(ln). In example 3.1 we find that
h̃(αj−1) = 1 and h̃(αr−1) = 1 as j, r = 0, 1, . . . , T − 1, h̃(αT −1) = αT H ′

, H ′ = H − 1
2 and

RH
r (0) = α2T H ′+r , RH

j (0) = α2T H ′+j thus the spectral density matrix of W(ln) is

dH
jr(ω) = α2T H ′

2π

[
αj

e−iωT αT/2 − 1
+

αr

1 − e−iωT α−T/2

]
.

13



J. Phys. A: Math. Theor. 43 (2010) 125004 N Modarresi and S Rezakhah

Acknowledgments

The authors would like to express their thanks to both anonymous referees for valuable
comments and suggestions which improved the original manuscript. This research was in part
supported by a grant from IPM (No. 88600114).

References

[1] Borgnat P, Amblard P O and Flandrin P 2005 Scale invariances and Lamperti transformations for stochastic
processes J. Phys. A: Math. Gen. 38 2081–101

[2] Borgnat P, Flandrin P and Amblard P O 2002 Stochastic discrete scale invariance IEEE Signal Process. Lett.
9 181–4

[3] Borisov I S 1982 On a criterion for Gaussian random processes to be Markovian Theory Probab. Appl. 27 863–5
[4] Caballero M E and Chaumont L 2006 Weak convergence of positive self-similar Markov processes and

overshoots of Levy processes Ann. Probab. 34 1012–34
[5] Doob J L 1953 Stochastic Processes (New York: Wiley)
[6] Flandrin P, Borgnat P and Amblard P O 2003 From stationarity to self-similarity, and back: variations on the

Lamperti transformation (Lecture notes in Physics vol 621) (Berlin: Springer) pp 88–117
[7] Gikhman I I and Skorkhod A V 2004 The Theory of Stochastic Processes II (Berlin: Springer)
[8] Gladyshev E G 1961 Periodically correlated random sequences Sov. Math. Dokl. 2 385–8
[9] Loeve M 1963 Probability Theory 3rd edn (Princeton, NJ: Van Nostrand)

[10] Modarresi N and Rezakhah S 2009 Discrete time scale invariant Markov processes arXiv.org/pdf/0905.3959v3
[11] Nematollahi A R and Soltani A R 2000 Discrete time periodically correlated Markov processes Probab. Math.

Stat. 20 127–40
[12] Rozanov Y A 1967 Stationary Random Processes (San Francisco: Holden Day)
[13] Yazici B and Kashyap R L 1997 A class of second-order stationary self-similar processes for 1/f phenomena

IEEE Trans. Signal Process. 45 396–410
[14] Wang A C 1997 Multiscale state–space algorithms for processing 1/f signals Thesis MIT

14

http://dx.doi.org/10.1088/0305-4470/38/10/002
http://dx.doi.org/10.1109/LSP.2002.800504
http://dx.doi.org/10.1137/1127097
http://dx.doi.org/10.1214/009117905000000611
http://dx.doi.org/10.1007-3-540-44832-2-5
http://dx.doi.org/10.1109/78.554304

	1. Introduction
	2. Theoretical framework
	2.1. Stationary and self-similar processes
	2.2. Quasi-Lamperti transformation
	2.3. Harmonizable representation
	2.4. Spectral density function

	3. Characterization of the spectrum
	3.1. Spectral representation of the multi-dimensional self-similar process
	3.2. Spectral density of the DT-SIM process

	Acknowledgments
	References

